
Barisal University Journal Part 1, 4(2):413-426 (2017) ISSN 2411-247X

413

A NEW COMPUTER ORIENTED TECHNIQUE FOR

SOLVING LINEAR PROGRAMMING PROBLEM USING

BENDER’S DECOMPOSITION METHOD

Md. Anwarul Islam Bhuiyan
1*

and Shek Ahmed
1

1
Department of Mathematics, University of Barisal, Barisal 8200, Bangladesh

Abstract

Linear Programming (LP) is a method to achieve the best outcome (such as maximum

profit or lowest cost) in a mathematical model whose requirements are represented

by linear relationships. Linear programming is a special case of mathematical

programming. Decomposition technique is one of the most commonly used technique for

solving Linear Programming Problems (LPP). There are many existing techniques for

solving LPP. If the number of decision variables and constraints for LPP is large then it

will be very difficult to solve manually. The purpose of this paper is to develop computer

oriented decomposition technique for solving LPP using benders decomposition

principle. By using this decomposition technique one can solve more complicated LPP by

dividing original problem into two easier problems, namely Master problem and Sub

problem. We demonstrate our technique by solving a relatively complicated LPP. For this

purpose we have also developed computer code using A Mathematical Programming

Language (AMPL) and present a comparison of results of manual output and

programming output.

Keywords: Linear Programming, Linear Programming Problems, Benders

Decomposition, A Mathematical Programming Language, Master Problem.

Introduction

Linear Programming Problems (LPP) in general are concerned with the use or allocation

of scarce resource-laborers, materials, machines, and capital-in the best possible manner

so that costs are minimized or profits are maximized. In using the term best it is implied

that some choices or a set of alternative courses of actions is available for making the

decision. In general, the best decision is found by solving a mathematical problem.

*
Corresponding author’s e-mail: anwar_1803@yahoo.com (M. A. I. Bhuiyan)

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Linear_function#As_a_polynomial_function
mailto:anwar_1803@yahoo.com

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

414

The development of linear programming (LP) is the most scientific advances in the mid

20
th
 century. LP involves the planning of activities to obtain an optimal result which

reaches the specialized goal best among all feasible alternatives. Numerous algorithms

for solving LP problem have been developed in the past.

Benders Decomposition is a popular technique for solving certain classes of difficult

problems such as stochastic programming problems and mixed-integer linear

programming problems. Benders Decomposition is a technique in mathematical

programming that allows the solution of very large linear programming problems that

have a special block structure. This structure often occurs in applications such as

stochastic programming. As it process towards a solution, Benders decomposition adds

new constraints, So the approach is called “row generation”. In contrast, Dantzig-Wolfe

decomposition uses “Column generation”.

A Mathematical Programming Language (AMPL) is an algebraic modeling language to

describe and solve high-complexity problems for large-scale mathematical computing

(i.e., large-scale optimization and scheduling-type problems). It was developed by Robert

Fourier, David Gay, and Brian Kernighan at Bell Laboratories. One advantage of AMPL

is the similarity of its syntax to the mathematical notation of optimization problems.

AMPL supports a wide range of problem types such as Linear Programming(LP),

Quadratic programming, Nonlinear programming, Mixed-integer programming, Mixed-

integer quadratic programming with or without convex quadratic constraints, Mixed-

integer nonlinear programming etc.

Objective of this paper is to develop a technique to solve more complicated LPP using

Bender’s decomposition method by converting LPP into two easier problems namely

Master problem and Sub problem. Finally our aim is to develop a computer code using A

Mathematical Programming Language (AMPL).

1. Preliminaries

In this section we discuss some basic definitions and techniques relevant to our work.

1.1 Linear Programming Problem (LPP)

The Linear Programming Problem (LPP) is to find the decision variables

 which is optimizing (minimizing or maximizing) the objective function.

Subject to the constraints,

https://en.wikipedia.org/wiki/Algebraic_modeling_language
https://en.wikipedia.org/wiki/Robert_Fourer
https://en.wikipedia.org/wiki/Robert_Fourer
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Nonlinear_programming
https://en.wikipedia.org/wiki/Linear_programming#Integer_unknowns
https://en.wikipedia.org/wiki/Convex_function

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

415

 .….……………………………………….

…………………………………………….

The coefficients are called the cost coefficients. The constants

 in the constraints conditions are called stipulations and the

constants are called the structural coefficients.

1.2 Duality in Linear Programming (LP)

Every linear programming problem whether it is of maximization or minimization is

associated with its mirror image problem based on the same data. The original problem is

often termed as primal problem while its image problem is called as its dual problem.

However, in general either problem can be considered as primal and the remaining as the

dual problem. Moreover, a solution to the primal problem also gives a solution to the dual

problem and vice versa. Duality is an extremely important and interesting feature of LP.

1.3 Benders Decomposition

Benders Decomposition is a technique in mathematical programming that allows

the solution of very large LPP that have a special block structure.

Benders Decomposition Principle for Linear Programming (LP)

Original Problem

Master problem

Sub-problem

Primal Sub-problem

Dual Sub-problem

)

2. Existing Techniques of Solving LPP

In this section, we have discussed some existing techniques briefly for solving LPP.

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

416

2.1 One Phase Simplex Method

Simplex Method (SM), also called simplex technique or simplex algorithm was

developed by Dantzig (1947). The SM is an iterative procedure which either solve an

LPP in a finite number of steps or gives an indication that there is an unbounded solution

to the LPP. To solve any LPP by SM, the existence of an initial basic feasible solution is

always assumed.

The steps for the computation of an optimum solution are as follows:

Step 1: Check whether the objective function of the given LPP is to be maximize or

minimized. If it is to be minimized then we convert it into a problem of maximization by

using the result

 .

Step 2: Check whether all are non-negative. If any one of is

negative, then multiply the corresponding inequation of the constraints by -1, so as to get

all non-negative.

Step 3: Convert all the inequalities of the constraints into equations by introducing slack

and/or surplus variables in the constraints. Put the costs of these variables equal to zero.

Step 4: Obtain an initial basic feasible solution to the problem in the form

and put it in the first column of the simplex table.

Step 5: Compute the net evaluations by using the relation

 . Examine the sign of .

(i) If all () then the initial basic feasible solution is an optimum basic

feasible solution.

(ii) If at least one () , proced on to the next step.

Step 6: If there are more than one negative (), then choose the most negative of

them. Let it be for some .

(i) If all , then there is an unbounded solution to the given

problem.

(ii) If at least one , then the corresponding vector enters in the

basis .

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

417

Step 7: Compute the ratios {

 and choose the minimum of them.

Let the minimum of these ratios be

. Then the vector will leave the basis . The

common element which is in the kth row and the rth column is known as the leading

element (or pivot element) of the table.

Step 8: Convert the leading element to unity by dividing its row by the leading element

itself and all other elements in its column to zeros by making use of the relations:

 and

 .

Step 9: Go to step 5 and repeat the computational procedure until either an optimum

solution is obtained or there is an indication of an unbounded solution.

This is easily achieved by the elementary row operations:

⁄

and

 .

2.2 Big M Method

A standard method for handling artificial variables within the simplex method is the Big-

M Method. To solve a LPP involving artificial variables, a method developed by

Charnes is called Charnes penalty method or penalty method or Charnes M-method or

Big-M method.

Step 1: Modify the constraints so that the right hand side (rhs) of each constraint is

nonnegative. Identify each constraint that is now an  or ≥ constraint.

Step 2: Convert each inequality constraint to standard form (add a slack variable for ≤

constraints, add an excess variable for ≥ constraints).

Step 3: For each ≥ or  constraint, add artificial variables. Add sign restriction ai ≥ 0.

Step 4: Let M denote a very large positive number. Add (for each artificial variable) Max

to min problem objective functions or -Min to max problem objective functions.

Step 5: Since each artificial variable will be in the starting basis, all artificial variables

must be eliminated from row 0 before beginning the simplex. Remembering M represents

a very large number, solve the transformed problem by the simplex.

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

418

2.3 Two Phase Simplex Method

Two phase simplex method is another form of Big-M method to solve a LPP involving

one or more artificial variables including two phases. Although they seem to be different,

they are essentially identical. However, methodologically the 2-Phase method is much

superior.

Phase I:

The simplex method is applied to remove all artificial variables added to the constraints.

Finally we may conclude that the LPP has feasible solution or not.

Phase-II:

Leads from the basic feasible solution determined by phase –I without artificial variables.

3. Proposed Technique for solving LPPs:

In this section we present Benders Decomposition Algorithm for solving LPP. We

demonstrate the algorithm by the following steps:

Original Problem P:

(variables are x and y, Hy may be a difficult, nonlinear or integer)

Master problem ()

(variables are x and z (a scalar), is fixed)

Sub problem S ():

 () (variables are , is fixed)

Initialize: Set k = 1, pick an (perhaps from maz cx, Ax<=b, x>=0)

Step 1: Solve S (): () .

 Get .

 Optimal if () () .

Step 2: Solve ()

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

419

 . Get new .

Step 3: Let: = k = k+1 and go to Step 1.

4. Optimal solution of a numerical example by using proposed technique

In this section we solve a numerical example using proposed technique manually.

Solution:

Iteration-1:

Master problem

Master problem solution:

Master value: 18.6

Primal Sub-problem

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

420

Dual Sub-problem

Sub problem solution:

Sub problem value: -11.5

Iteration-2:

Master problem solution:

Master value: 9.8

Sub problem solution:

Sub problem value: -16.24

Iteration-3:

Master problem solution:

Master value: 7.16279

Sub problem solution:

Sub problem value: -11.3953.

Since, At iteration 3 the value of z and sub problem value are same so optimal solution is

obtained.

Optimal Solution:

 []

5. Computer Code

In this section, we develop a computer code of our proposed technique. We have used a

mathematical programming language AMPL. Our code consists of AMPL model file,

AMPL data file and AMPL run file. But only model file and data have been presented in

this paper. If readers are interested then they may contact with the authors.

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

421

AMPL model file:

BENDERS DECOMPOSITION

param k>=1 default 1; # iteration

VARIABLE DECLARETION FOR MASTER ###

param nvm; # no. of variables in master

param c {1..nvm}; # coefficients of objective function

param ncm; # no. of constraints in master

param d {1..ncm,1..nvm}; # coefficients of variables in constraints.

param b {1..ncm}; # right hand constants

var xm {1..nvm}>=0; # variables in master

VARIABLE DECLARETION FOR SUB-PROGRAM ###

param nvs; # no. of variables in subprogram

param a {1..nvs}; # coeffients of objective function

param nrs; # no. of constraints in subprogram

param f {1..nrs,1..nvs}; # coefficients of variables in constraints

param e {1..nrs}; # right hand constants

var xs {1..nvs}>=0; # variables of subprograms

VARIABLE DECLARETION FOR PRIMAL SUB -PROGRAM ###

param nvp; # no. of variables in primal sub problem

param g {1..nvp}; # coeffients of objective function

param ncp; # no. of constraints in primal sub problem

param h {1..ncp,1..nvp}; # coefficients of variables in constraints

param r {1..ncp}; # right hand constants

var xp {1..nvp}>=0; # variables in primal sub problem

MASTER (FOR FIRST ITERATION) ###

maximize Master_1: sum {j in 1..nvm} c[j]*xm[j];

subject to const_master1 {i in 1..ncm}: sum {j in 1..nvm} d[i,j]*xm[j] <= b[i];

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

422

MASTER (FOR HIGHER ITERATION) ###

var z;

maximize Master_2: sum {j in 1..nvm-1} c[j]*xm[j] +c[nvm]*z;

subject to const_master2 {i in 1..ncm}: sum {j in 1..nvm-1} d[i,j]*xm[j]+d[i,nvm]*z <=

b[i];

SUB PROBLEM ###

minimize Sub_v: sum {j in 1..nvs} a[j]*xs[j];

subject to const_sub {i in 1..nrs}: sum {j in 1..nvs} f[i,j]*xs[j] >= e[i];

PRIMAL SUB PROBLEM ###

maximize primal_v: sum {j in 1..nvp} g[j]*xp[j];

subject to const_primal {i in 1..ncp}: sum {j in 1..nvp} h[i,j]*xp[j] <= r[i];

AMPL data file:

param nvm := 2;

param c:=

 1 7

 2 6;

param ncm := 2;

param d: 1 2:=

 1 5 3

 2 5 9;

param b := 9

 1 12

 2 18;

param nvs := 3;

param nrs := 2;

param f: 1 2 3:=

 1 -2 1 2

 2 -1 -2 -1;

param e :=

 1 -3

 2 -5;

param nvp := 2;

param g:=

 1 -3

 2 -5;

param ncp := 3;

param h: 1 2:=

 1 -2 -1

 2 1 -2

 3 2 -1;

AMPL Output System

Like other software such as FORTRAN, MATHEMATICA, MATHLAB, LINDO etc.

AMPL has an intrinsic system to run code. In AMPL model file and data file have to

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

423

write in different text files. Then one can generate a run file and have to call model and

data file in that run file. AMPL has different solvers.

6. Optimal solution using Computer Code

We solve a numerical problem which is given in section 5 by our developed AMPL code.

AMPL output has shown below:

6.1 Output of the numerical example

In this section we give a computer output by using AMPL.

Table 1. Output using computer code.

iteration = 1

MINOS 5.5: optimal solution found.

1 iterations, objective 15

xm [*] :=

1 1.8

2 1;

Solve Sub problem:

2 iterations, objective -42

xs [*] :=

1 0

2 2.5

3 0;

iteration = 2

Solve Master:

MINOS 5.5: optimal solution found.

1 iterations, objective -12

 xm[1] = 2.4

 xm[2] = 0

 z = -7;

Solve Sub problem:

MINOS 5.5: optimal solution found.

2 iterations, objective -24

xs [*] :=

 1 2.2

 2 1.4

 3 0;

iteration = 3

Solve Master:

MINOS 5.5: optimal solution found.

xm[1] =1.81395

xm[2] =0.976744

z = -11.3953

Solve Sub problem:

MINOS 5.5: optimal solution found.

1 iterations, objective -21

xs [*] :=

 1 2.2

 2 1.4

1 0;

2 iterations, objective -22.5

xp [*] :=

 1 0

2 2.27907

Optimal Solution:

os [*] :=

 1 1.81395

 2 0.976744

 3 0

 4 2.27907;

ov = 7.16279

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

424

7. Result and discussion

In this section we compare the results between manual output and program output.

Table 2. Comparison between manual output and program output

Iteration

number
Manual Output Program Output

1

2

3

Form the above table we can say that our computer code in Section 6 gives as much as

the same results as we have in Section 5. Moreover, the difference of getting the different

results in just a few cases are caused by the tolerance and internal difference of carrying

operations between Mathematical Coding and AMPL.

Barisal University Journal Part 1, 4(2):413-426 (2017) Bhuiyan and Ahmed

425

8. Graphical Representation of the Convergence of the Master and Sub problem

Value

<<Graphics` Multiple List Plot`

 a={{1,0},{2,-7},{3,-11.3953}};

 s={{1,-11.5},{2,-16.24},{3,-11.395344}};

 Multiple List Plot [a, s, Axes Label {"Iteration No. ","Objective Value"}, Plot

Joined True, Plot Legend {value z, Sub}];

Fig 1. Convergence of the sub-problem and master-problem values.

9. Conclusion

In this paper we presented a new technique for solving more complicated LPPs. To

develop this technique we used the idea of benders decomposition method. We also

developed a computer code using AMPL for solving LPPs and so that we can easily solve

LPPs using it. Graphical representations also illustrated to show the convergence of the

master and the sub-problem values. using MATHEMATICA. This improved technique

will be extended to solve the Integer Programming Hence we can conclude that our

decomposition algorithm can be used as an effective tool for solving LPs to avoid the

laborious calculations using row generation.

1.5 2 2.5 3
Iteration No

-15

-12.5

-10

-7.5

-5

-2.5

Objective Value

Sub

Value z

Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented

426

References

Dantzig, G. B. and P. Wolfe. 1961. The decomposition algorithm for linear

programming. Econometrica. 29:767-778.

Dantzig, G.B. 1963. Linear Programming and Extensions, Princeton University Press,

Princeton. U.S.A.

Don, E. 2000. Theory and Problems of Mathematica, Schaum’s Outline Series,

McGRAW-HILL.

Fisher, M. L. 1979. The lagrangean relaxation method for solving integer programming

problem. Management Science. 27:75-83.

Fourier, Robert; Gay, David M. 2002. Extending an algebraic modeling language to

support constraint programming. INFORMS Journal on Computing. 14:322-344.

Geofrion, A. M. 1974. Lagrange relaxation for integer program. Mathematical

programming study. 26:82-114.

Hasan, M. B. and J. F. Raffensperger. 2007. A decomposition based pricing model for

solving a large-scale MILP model for an integrated fishery. Journal of Applied

Mathematics and Decision Sciences. Vol. 2007, Article ID 56404, 10 pages.

Held, M. and R. M. Karp. 1970. The travelling salesman Problem and minimum spanning

tree. Operations Research. 18:1138-162.

Held, M. and R.M. Karp 1971. The travelling salesman problem and minimum spanning

tree: Part II. Mathematical Programming I. 23:6-25.

R. Fourier, and Brian W. K. 2002. AMPL: A Modeling Language for Mathematical

Programming, Duxbury Press.

Sweeny, D. J. and R. A. Murphy. 1979. A method of decomposition for integer programs.

Operations Research. 27:1128-1141.

Winston, W. L. 1994. Linear Programming: Applications and Algorithm, Duxbury press,

Belmont, California, U.S.A.

