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Abstract 

Linear Programming (LP) is a method to achieve the best outcome (such as maximum 

profit or lowest cost) in a mathematical model whose requirements are represented 

by linear relationships. Linear programming is a special case of mathematical 

programming. Decomposition technique is one of the most commonly used technique for 

solving Linear Programming Problems (LPP). There are many existing techniques for 

solving LPP. If the number of decision variables and constraints for LPP is large then it 

will be very difficult to solve manually. The purpose of this paper is to develop computer 

oriented decomposition technique for solving LPP using benders decomposition 

principle. By using this decomposition technique one can solve more complicated LPP by 

dividing original problem into two easier problems, namely Master problem and Sub 

problem. We demonstrate our technique by solving a relatively complicated LPP. For this 

purpose we have also developed computer code using A Mathematical Programming 

Language (AMPL) and present a comparison of results of manual output and 

programming output. 

Keywords: Linear Programming, Linear Programming Problems, Benders 

Decomposition, A Mathematical Programming Language, Master Problem. 

Introduction 

Linear Programming Problems (LPP) in general are concerned with the use or allocation 

of scarce resource-laborers, materials, machines, and capital-in the best possible manner 

so that costs are minimized or profits are maximized. In using the term best it is implied 

that some choices or a set of alternative courses of actions is available for making the 

decision. In general, the best decision is found by solving a mathematical problem.   
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The development of linear programming (LP) is the most scientific advances in the mid 

20
th
 century. LP involves the planning of activities to obtain an optimal result which 

reaches the specialized goal best among all feasible alternatives. Numerous algorithms 

for solving LP problem have been developed in the past. 

Benders Decomposition is a popular technique for solving certain classes of difficult 

problems such as stochastic programming problems and mixed-integer linear 

programming problems. Benders Decomposition is a technique in mathematical 

programming that allows the solution of very large linear programming problems that 

have a special block structure. This structure often occurs in applications such as 

stochastic programming. As it process towards a solution, Benders decomposition adds 

new constraints, So the approach is called “row generation”. In contrast, Dantzig-Wolfe 

decomposition uses “Column generation”. 

A Mathematical Programming Language (AMPL) is an algebraic modeling language to 

describe and solve high-complexity problems for large-scale mathematical computing 

(i.e., large-scale optimization and scheduling-type problems). It was developed by Robert 

Fourier, David Gay, and Brian Kernighan at Bell Laboratories. One advantage of AMPL 

is the similarity of its syntax to the mathematical notation of optimization problems. 

AMPL supports a wide range of problem types such as Linear Programming(LP), 

Quadratic programming, Nonlinear programming, Mixed-integer programming, Mixed-

integer quadratic programming with or without convex quadratic constraints, Mixed-

integer nonlinear programming etc. 

Objective of this paper is to develop a technique to solve more complicated LPP using 

Bender’s decomposition method by converting LPP into two easier problems namely 

Master  problem and Sub problem. Finally our aim is to develop a computer code using A 

Mathematical Programming Language (AMPL).     

1. Preliminaries 

In this section we discuss some basic definitions and techniques relevant to our work. 

1.1 Linear Programming Problem (LPP)  

The Linear Programming Problem (LPP) is to find the decision variables 

              which is optimizing (minimizing or maximizing) the objective function. 

                     

Subject to the constraints,  
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 .….………………………………………. 

……………………………………………. 

                                 

                           

The coefficients                    are called the cost coefficients. The constants 

                  in the constraints conditions are called stipulations and the 

constants                                  are called the structural coefficients. 

1.2 Duality in Linear Programming (LP) 

Every linear programming problem whether it is of maximization or minimization is 

associated with its mirror image problem based on the same data. The original problem is 

often termed as primal problem while its image problem is called as its dual problem. 

However, in general either problem can be considered as primal and the remaining as the 

dual problem. Moreover, a solution to the primal problem also gives a solution to the dual 

problem and vice versa. Duality is an extremely important and interesting feature of LP. 

1.3 Benders Decomposition 

Benders Decomposition is a technique in mathematical programming that allows 

the solution of very large LPP that have a special block structure.  

Benders Decomposition Principle for Linear Programming (LP) 

Original Problem 

                                  

                                

                    

                                                     

Master problem 

                                      

                               

                                                  

Sub-problem 

Primal Sub-problem 

                                

                                       

                               

Dual Sub-problem 

           )                          

                                               

                                                    

2. Existing Techniques of Solving LPP 

In this section, we have discussed some existing techniques briefly for solving LPP. 
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2.1 One Phase Simplex Method 

Simplex Method (SM), also called simplex technique or simplex algorithm was 

developed by Dantzig (1947). The SM is an iterative procedure which either solve an 

LPP in a finite number of steps or gives an indication that there is an unbounded solution 

to the LPP. To solve any LPP by SM, the existence of an initial basic feasible solution is 

always assumed.  

The steps for the computation of an optimum solution are as follows: 

Step 1: Check whether the objective function of the given LPP is to be maximize or 

minimized. If it is to be minimized then we convert it into a problem of maximization by 

using the result 

                       . 

Step 2: Check whether all                are non-negative. If any one of    is 

negative, then multiply the corresponding inequation of the constraints by -1, so as to get 

all                non-negative. 

Step 3: Convert all the inequalities of the constraints into equations by introducing slack 

and/or surplus variables in the constraints. Put the costs of these variables equal to zero. 

Step 4: Obtain an initial basic feasible solution to the problem in the form  

        

and put it in the first column of the simplex table. 

Step 5: Compute the net evaluations                 by using the relation       

       . Examine the sign of      . 

(i) If all (     )    then the initial basic feasible solution    is an optimum basic 

feasible solution. 

(ii) If at least one (     )   , proced on to the next step. 

Step 6: If there are more than one negative (     ), then choose the most negative of 

them. Let it be         for some    . 

(i) If all                 , then there is an unbounded solution to the given 

problem. 

(ii) If at least one                 , then the corresponding vector     enters in the 

basis   . 
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Step 7: Compute the ratios {
   

   
                 and choose the minimum of them. 

Let the minimum of these ratios be 
   

   
. Then the vector    will leave the basis   . The 

common element     which is in the kth row and the rth column is known as the leading 

element (or pivot element) of the table. 

Step 8: Convert the leading element to unity by dividing its row by the leading element 

itself and all other elements in its column to zeros by making use of the relations:  

 

   
 

   

   
                and 

 

   
     

   

   
                  . 

Step 9: Go to step 5 and repeat the computational procedure until either an optimum 

solution is obtained or there is an indication of an unbounded solution. 

This is easily achieved by the elementary row operations:  

   
  

   
⁄  

and     
       

        . 

2.2 Big M Method 

A standard method for handling artificial variables within the simplex method is the Big-

M Method.  To solve a LPP involving artificial variables, a method developed by 

Charnes is called Charnes penalty method or penalty method or Charnes M-method or 

Big-M method. 

Step 1: Modify the constraints so that the right hand side (rhs) of each constraint is 

nonnegative. Identify each constraint that is now an   or ≥ constraint. 

Step 2: Convert each inequality constraint to standard form (add a slack variable for ≤ 

constraints, add an excess variable for ≥ constraints). 

Step 3: For each ≥ or  constraint, add artificial variables. Add sign restriction ai ≥ 0. 

Step 4: Let M denote a very large positive number. Add (for each artificial variable) Max 

to min problem objective functions or -Min to max problem objective functions. 

Step 5: Since each artificial variable will be in the starting basis, all artificial variables 

must be eliminated from row 0 before beginning the simplex. Remembering M represents 

a very large number, solve the transformed problem by the simplex. 
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2.3 Two Phase Simplex Method 

Two phase simplex method is another form of Big-M method to solve a LPP involving 

one or more artificial variables including two phases. Although they seem to be different, 

they are essentially identical. However, methodologically the 2-Phase method is much 

superior.  

Phase I: 

The simplex method is applied to remove all artificial variables added to the constraints. 

Finally we may conclude that the LPP has feasible solution or not. 

Phase-II: 

Leads from the basic feasible solution determined by phase –I without artificial variables. 

3. Proposed Technique for solving LPPs:  

In this section we present Benders Decomposition Algorithm for solving LPP. We 

demonstrate the algorithm by the following steps: 

Original Problem P: 

                              

(variables are x and y, Hy may be a difficult, nonlinear or integer) 

Master problem   (    )   

                              

                        

(variables are x and z (a scalar),      is fixed) 

Sub problem S (    ):   

     (       )          (variables are    ,      is fixed) 

Initialize:  Set k = 1, pick an      (perhaps from maz cx, Ax<=b, x>=0) 

Step 1:   Solve S (    ):       (       )         .     

               Get     .  

              Optimal if   (        )     (    ) . 

Step 2:   Solve   (    )                                              
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                         . Get new     . 

Step 3: Let: = k = k+1 and go to Step 1.  

4. Optimal solution of a numerical example by using proposed technique  

In this section we solve a numerical example using proposed technique manually. 

                                                           

                                                                                     

                                                                                             

                                                                  

                                       

                                                                                        

                                          

Solution:  

Iteration-1: 

Master problem 

                              

                                                                          

                                                         

                                                            

Master problem solution:                  

Master value: 18.6 

Primal Sub-problem 

                                            

                                                                            

                                                                  

                                                                             

                          



Barisal University Journal Part 1, 4(2):413-426 (2017) A New Computer Oriented  

 

420 

Dual Sub-problem 

                                                               

                                                                        

                                                                                             

                                      

                                                   

                                                        

Sub problem solution:                       

Sub problem value: -11.5 

Iteration-2: 

Master problem solution:                           

Master value: 9.8 

Sub problem solution:                         

Sub problem value: -16.24 

Iteration-3: 

Master problem solution:                        

                    

Master value: 7.16279 

Sub problem solution:                         

Sub problem value: -11.3953. 

Since, At iteration 3 the value of z and sub problem value are same so optimal solution is 

obtained. 

Optimal Solution:                                                        

                              [                                              ] 

5. Computer Code  

In this section, we develop a computer code of our proposed technique. We have used a 

mathematical programming language AMPL. Our code consists of AMPL model file, 

AMPL data file and AMPL run file. But only model file and data have been presented in 

this paper. If readers are interested then they may contact with the authors. 
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AMPL model file: 

#  BENDERS  DECOMPOSITION  

param  k>=1 default 1;          # iteration 

###  VARIABLE  DECLARETION  FOR   MASTER  ### 

param nvm;                           # no. of variables in master 

param c {1..nvm};                 # coefficients of objective function 

param ncm;                            # no. of  constraints in master 

param d {1..ncm,1..nvm};     # coefficients of variables in constraints.       

param b {1..ncm};                 # right hand constants 

var xm {1..nvm}>=0;            # variables in master 

# ##   VARIABLE  DECLARETION  FOR   SUB-PROGRAM    ### 

param nvs;                             # no. of variables in subprogram 

param  a {1..nvs};                 # coeffients of objective function  

param nrs;                             # no. of  constraints  in subprogram 

param f {1..nrs,1..nvs};        # coefficients of variables in constraints 

param e {1..nrs};                  # right hand constants  

var xs {1..nvs}>=0;              # variables of subprograms 

# ##   VARIABLE  DECLARETION  FOR   PRIMAL SUB -PROGRAM    ### 

param nvp;                           # no. of variables in primal sub problem  

param g {1..nvp};                # coeffients of objective function 

param ncp;                           # no. of  constraints in primal sub problem 

param h {1..ncp,1..nvp};     # coefficients of variables in constraints     

param r {1..ncp};                # right hand constants 

var xp {1..nvp}>=0;           # variables in primal sub problem 

###    MASTER  ( FOR FIRST ITERATION )   ### 

maximize Master_1: sum {j in 1..nvm} c[j]*xm[j]; 

subject to const_master1 {i in 1..ncm}: sum {j in 1..nvm} d[i,j]*xm[j] <= b[i]; 
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###    MASTER (FOR HIGHER ITERATION)  ### 

var z;  

maximize Master_2: sum {j in 1..nvm-1} c[j]*xm[j] +c[nvm]*z; 

subject to const_master2 {i in 1..ncm}: sum {j in 1..nvm-1} d[i,j]*xm[j]+d[i,nvm]*z <= 

b[i]; 

###    SUB PROBLEM   ### 

minimize Sub_v: sum {j in 1..nvs} a[j]*xs[j]; 

subject to const_sub {i in 1..nrs}: sum {j in 1..nvs} f[i,j]*xs[j] >= e[i]; 

###    PRIMAL SUB PROBLEM   ### 

maximize primal_v: sum {j in 1..nvp} g[j]*xp[j]; 

subject to const_primal {i in 1..ncp}: sum {j in 1..nvp} h[i,j]*xp[j] <= r[i]; 

AMPL data file: 

param nvm :=  2; 

param  c:=  

            1     7 

            2     6;              

param ncm :=  2; 

param  d:   1   2:= 

            1    5   3 

            2    5   9;      

param  b := 9 

            1     12 

            2     18; 

param nvs := 3; 

param nrs := 2; 

param f:    1     2    3:= 

          1     -2    1    2 

          2     -1   -2   -1; 

param e :=  

           1      -3 

           2      -5; 

param nvp := 2; 

param g:= 

           1      -3 

           2      -5;      

param ncp := 3; 

param h:   1    2:= 

           1   -2   -1 

           2    1    -2 

           3    2    -1; 

AMPL Output System 

Like other software such as FORTRAN, MATHEMATICA, MATHLAB, LINDO etc. 

AMPL has an intrinsic system to run code. In AMPL model file and data file have to 
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write in different text files. Then one can generate a run file and have to call model and 

data file in that run file. AMPL has different solvers.  

6. Optimal solution using Computer Code 

We solve a numerical problem which is given in section 5 by our developed AMPL code. 

AMPL output has shown below: 

6.1 Output of the numerical example 

In this section we give a computer output by using AMPL. 

Table 1.  Output using computer code. 

iteration = 1 

MINOS 5.5: optimal solution found. 

1 iterations, objective 15 

xm [*] := 

1 1.8 

2 1; 

Solve Sub problem: 

2 iterations, objective -42 

xs [*] := 

1    0 

2    2.5 

3 0; 

iteration = 2 

Solve Master: 

MINOS 5.5: optimal solution found. 

1 iterations, objective -12 

  xm[1] = 2.4 

  xm[2] = 0 

  z = -7; 

Solve Sub problem: 

MINOS 5.5: optimal solution found. 

2 iterations, objective -24 

xs [*] := 

     1     2.2 

     2     1.4 

     3     0; 

iteration = 3 

Solve Master: 

MINOS 5.5: optimal solution found. 

xm[1] =1.81395 

xm[2] =0.976744 

z = -11.3953 

Solve Sub problem: 

MINOS 5.5: optimal solution found. 

1 iterations, objective -21 

xs [*] := 

       1    2.2 

       2    1.4 

1 0; 

2 iterations, objective -22.5 

xp [*] := 

       1    0 

2 2.27907 

Optimal Solution: 

os [*] := 

      1    1.81395 

      2    0.976744 

      3    0 

      4    2.27907; 

ov = 7.16279 
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7. Result and discussion 

In this section we compare the results between manual output and program output. 

Table 2.  Comparison between manual output and program output 

Iteration 

number 
Manual Output Program Output 

 

 

 

1 

                         

              

                         

                     

                        

                             

                         

             

                         

                     

                              

                             

 

 

 

2 

                         

                         

                               

                     

                        

                              

                         

                         

                               

                     

                        

                              

 

 

 

 

3 

                            

                            

                      

               

                     

                        

                  

               

                             

                          

                

                   

                     

                        

                  

                    

Form the above table we can say that our computer code in Section 6 gives as much as 

the same results as we have in Section 5. Moreover, the difference of getting the different 

results in just a few cases are caused by the tolerance and internal difference of carrying 

operations between Mathematical Coding and AMPL. 
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8. Graphical Representation of the Convergence of the Master and Sub problem 

Value 

<<Graphics` Multiple List Plot` 

 a={{1,0},{2,-7},{3,-11.3953}}; 

 s={{1,-11.5},{2,-16.24},{3,-11.395344}}; 

 Multiple List Plot [a, s, Axes Label {"Iteration No. ","Objective Value"}, Plot 

Joined True, Plot Legend {value z, Sub}]; 

 

Fig 1. Convergence of the sub-problem and master-problem values. 

 

9. Conclusion 

In this paper we presented a new technique for solving more complicated LPPs. To 

develop this technique we used the idea of benders decomposition method. We also 

developed a computer code using AMPL for solving LPPs and so that we can easily solve 

LPPs using it. Graphical representations also illustrated to show the convergence of the 

master and the sub-problem values. using MATHEMATICA. This improved technique 

will be extended to solve the Integer Programming Hence we can conclude that our 

decomposition algorithm can be used as an effective tool for solving LPs to avoid the 

laborious calculations using row generation. 
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